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We numerically and theoretically study the macroscopic properties of dense, sheared granular materials. In
this process we first consider an invariance in Newton’s equations, explain how it leads to Bagnold’s scaling,
and discuss how it relates to the dynamics of granular temperature. Next we implement numerical simulations
of granular materials in two different geometries—simple shear and flow down an incline—and show that
measurements can be extrapolated from one geometry to the other. Then we observe nonaffine rearrangements
of clusters of grains in response to shear strain and show that fundamental observations, which served as a
basis for the shear transformation zone �STZ� theory of amorphous solids �M. L. Falk and J. S. Langer, Phys.
Rev. E. 57, 7192 �1998�; M.R.S. Bull 25, 40 �2000��, can be reproduced in granular materials. Finally we
present constitutive equations for granular materials as proposed by Lemaître �Phys. Rev. Lett. 89, 064303
�2002��, based on the dynamics of granular temperature and STZ theory, and show that they match remarkably
well with our numerical data from both geometries.
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I. INTRODUCTION

Historically reserved to the engineering community �1–4�,
granular materials recently emerged as a new field of study
for physicists �5–11�: a state of matter that is not classifiable
according to the traditional ternary—solid, liquid, or gas—
and requires scientists to rethink the foundations of statistical
physics and thermodynamics �12,13�. The first theories of
granular materials were motivated primarily by the need to
predict the creep motion of soils and their stability proper-
ties. Inspired by continuum theories of plasticity, these ap-
proaches were restricted to quasistatic deformation and in-
cipient failure �1–4,14–16�. In physics, initial progress came
in understanding dilute granular materials with the develop-
ment of kinetic theory �17–29�. But kinetic theory is based
on the assumption that interactions between grains occur dur-
ing instantaneous binary collisions, a condition that is ex-
pected to break down in the dense regime.

Traditional approaches thus leave us with little under-
standing of the elementary mechanisms of deformation in
dense granular materials. It is no wonder that the elaboration
of physically inspired constitutive equations for granular ma-
terials is currently facing a collection of controversial issues
which challenge its basic assumptions. Common points of
contention include �i� the relevant features of the grain-grain
interaction—e.g., Hertzian versus hard-sphere repulsion
�11,30,31�—�ii� the domain of applicability of kinetic theo-
ries �26,28,32–34�, �iii� the observation and micromechanical
origin of Bagnold scaling in dense flows �35–40�, and �iv�
the plausible need to formulate “nonlocal” constitutive equa-
tions �41–45� due to the existence of force chains �46–50�.
Uncertainties about these questions have fueled a wealth of
theoretical models. Some models posit that frustrated rota-
tion plays a preeminent role in jamming �51,52�. Many mod-
els propose extensions of kinetic theory by using either
granular temperature �53�, introducing strongly density-
dependent viscosities �54–56�, or incorporating a quasistatic
stress at the internal friction angle of the material �57–62�.

Other models are based on the introduction of force chains
�41–43�, activated processes �63�, “granular eddies” �44�, co-
existing liquid and solid microphases in a Ginzburg-Landau
formulation �64–66�, or “spots” of free volume associated
with cooperative diffusion �67,68�.

Several of the above-mentioned models conjecture jam-
ming mechanisms—frustrated rotations, force chains, granu-
lar eddies—which are so specific to granular materials that
they do not allow direct connections with jamming in other
materials. Our approach rests on the viewpoint that, since
jamming is observed in many amorphous systems, it is likely
that it has a common origin. It was thus proposed �69� that a
rescaling of the dynamics of perfectly hard granular materi-
als would make it possible to map their properties onto more
typical glass formers. Building on the analogy between
granular materials and metallic glasses then provides a local
mechanism of jamming on the basis of the shear transforma-
tion zone �STZ� theory of plasticity �70,71�.

The goal of the present paper is to both discuss some of
the microscopic assumptions underlying the construction of
constitutive equations for granular materials and test some
specific predictions of the STZ theory formulation of such
equations �69�. Our approach is based on the following ex-
pectations concerning the four points of contention identified
above: �i� major properties of dense granular flows can be
captured by perfectly hard grains; �ii� jamming is associated
with changes in the contribution of long-lasting contacts to
the stress tensor, in regimes where the collisional
contributions—those predicted by kinetic theory—are negli-
gible; �iii� for flows of perfectly hard grains, Bagnold’s scal-
ing is relevant at all densities in the bulk of the flow and
arises from an invariance in the equations of motion; and �iv�
the rheology of dense granular materials is local in a sense to
be defined further.

Indeed, �i� a recent work by Campbell has shown—
convincingly to us—that most natural and experimental
flows occur in a regime of strain rates where grains can be
considered as hard spheres �72�. Although this question may
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still be debated, we will take this for granted and restrict our
study to a material composed of perfectly hard grains. �ii�
The breakdown of kinetic theory in dense flows has now
been characterized in several numerical and experimental
studies �73–78� and indicates that jamming is associated with
changes in the contribution of long-lasting contacts to the
stress tensor, not the collisional contribution. We will take
this idea for granted in the present work, but we do believe
that a quantitative analysis of this statement is needed and
will devote a future paper to this question �79�. �iii� We will
show following �69� that in the case of perfectly hard grains
Bagnold’s scaling holds for any density, in the bulk of the
flow. Assumption �iv� is strongly inspired by the works by
Aranson and co-workers, who have shown that a Ginzburg-
Landau formulation of a fluid-solid mixture �64–66� could
account for important properties of granular flows. This sug-
gests that a local formulation of granular rheology, coupled
to hydrodynamic equations, can be sufficient to account for a
large part of the phenomena observed in dense granular
flows. However, no numerical study has been specifically
devoted to the question of whether constitutive equations
that hold in one shearing geometry will also hold in a differ-
ent shearing geometry, with the same fitting parameters. This
is closely related to the notion of locality and whether
boundary effects play a role in bulk dynamics.

Therefore, we will first study whether dense granular
flows can be described as a local phenomenon, governed by
local continuum equations, or whether granular flows must
be treated nonlocally, relying on the emergence of long-
range correlations through microscopic mechanisms such as
force chains. For this purpose we have implemented contact
dynamics simulations of sheared granular materials in two
different configurations: �i� simple shear in a periodic cell
and �ii� thick flows of granular material down an incline
plane. We will show that the measurements obtained in either
configuration can be extrapolated to the other.

Next we follow Falk and Langer �70,71� and test for the
consistency of the STZ picture of material deformation ad-
vocated by these authors. Our observation provides further
support for the analogy between granular materials and com-
mon glass formers and direct support for the relevance of
STZ theory to granular materials. A review of the STZ con-
stitutive equations for granular flows will follow and finally a
fit of the theory with our numerical data.

The organization of our paper is as follows. In Sec. II we
present equations of motion in the mathematical limit of per-
fectly hard grains. We discuss the invariance properties of
the equations of motion and how these properties are related
to Bagnold’s scaling. We also discuss why the results for
perfectly hard grains are applicable to natural and experi-
mental granular materials. In Sec. III we construct our nu-
merical test, provide algorithmic details on the contact dy-
namics method, and compare the rheology of a dense
granular materials in a periodic cell and down an incline
plane. Finally, in Sec. IV, we present Falk and Langer’s STZ
theory, show how it adapts to granular materials, and con-
clude with fits of our data.

II. FUNDAMENTAL RESULTS FOR PERFECTLY HARD
GRAINS

When grains are dry—so that no water bridges induce
attraction—and of size larger than the micrometer scale—so
that no electrostatic interaction intervenes—their interaction
is purely repulsive. The interaction results from the elastic
deformation of grains at contact and the dissipation of energy
via friction and collisions. The complexity of this interaction
motivates our first question: which properties of the grain-
grain interaction contribute to any particular macroscopic ob-
servation? In some instances, details of the grain-grain inter-
action seem critical: for example, the Hertzian repulsion �30�
is essential to understand the acoustic properties of granular
materials �80,81�. Numerical implementations of granular
materials have thus relied on more or less elaborate models
of the grain-grain interaction �82,83�.

Here we are concerned with dense flows of granular ma-
terials and, in particular, flows down inclines as found in the
experiments by Pouliquen �84� and numerics by Silbert and
co-workers �38,39�. For these dense granular flows a recent
study by Campbell helps us assess the importance of the
elastic �soft� part of the repulsive potential �72� versus the
limit in which grains appear as perfectly hard spheres. Camp-
bell presented a detailed analysis of the different flow re-
gimes obtained in a three-dimensional simple shear simula-
tion of dense granular flows when varying the stiffness k of
the repulsion, the shear rate �̇, and the mass density �. He
found that the dimensionless parameter ��k /�D3�̇2, where
D is the grain size, dictates the character of the flow. This
quantity is directly related to a Mach number which involves
the ratio of the shear velocity D�̇ over the sound speed cs:
M =D�̇ /cs=1/��. The hard-sphere limit corresponds to the
situation where sound waves travel very fast compared to the
motion induced by the shear flow. This is the limit of very
small Mach number, or small shear rates. Specifically, in the
numerics by Campbell, this limit is reached for Mach num-
bers below �10−2. Since the sound speed in granular mate-
rials is of the order of 100 m/s, if we assume a grain size of
the order of 1 mm, the Mach number is expressible as
M =10−5�̇. Therefore, in order to be in the limit where grains
behave as if they are perfectly stiff, it suffices to restrict
oneself to shear rates below 1000 s−1. Most experimental and
natural situations occur at shear rates far below this limiting
value, and we can conclude that most flows of grains are in
the limit where the soft part of the repulsion is entirely
masked by the steric exclusion. To study these flows it is
sufficient to consider properties of perfectly hard grains. In
the following sections we explore how the mathematical
limit of perfectly hard spheres gives insight into fundamental
processes which relate to many experimental shear flows.

A. Equations of motion and hard-sphere conditions

The motion of N spherical grains in a d-dimensional
granular material is determined by Newton’s equations for
the positions qi, angular orientations �i, momenta pi, and
angular velocities �i:

dqi

dt
=

pi

mi
,

dpi

dt
= �

j

Fij + Fext, �1�
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d�i

dt
= �i,

d�i

dt
=

1

Ii
�

j

Rin̂ij � Fij , �2�

where Fext represents an external force such as gravity, Fij
represents a contact force on grain i by grain j, n̂ij is the unit
normal vector pointing from grain i to grain j, Ri is the radius
of grain i, and Ii is the moment of inertia.

These equations must be complemented with a prescrip-
tion for the contact forces. In the hard-sphere limit
these contact forces are determined self-consistently by the
conditions that �i� there is no penetration between grain—a
force is instantaneously created upon contact to impede pen-
etration and remains nonzero until the contact is broken—
and �ii� by the friction law which couples to rotational de-
grees of freedom.

Important properties of granular materials arise directly
from an invariance of the equations of motion �1� and �2�.
We now spend some time studying these properties and as-
sessing their consequences for macroscopic observations, in
particular Bagnold’s scaling.

B. Bagnold’s scaling

The success of kinetic theory came in a large part from its
ability to account for the scaling between stress � and strain
rate �̇ ��� �̇2� first observed by Bagnold in dense granular
materials �35�. Bagnold justified this behavior with a simple
argument: the frequency of collisions and momentum change
per collision are each proportional to the shear rate and there-
fore the stress is proportional to the square of the shear rate.
Similar dimensional arguments are also a part of kinetic
theory and are closely related to the concept of granular tem-
perature �see �85� for a review�. However, since these argu-
ments are only generally discussed in the framework of ki-
netic theory, it is unclear why Bagnold’s scaling should hold
in dense systems where grains do not interact solely through
binary collisions.

This has led to a great deal of interest in the origin and
existence of Bagnold’s scaling for dense granular flows. On
the one hand, Bagnold’s observations have been criticized:
they may have arisen from a secondary instability of the
granular flow in his shear cell �37�. On the other hand, Bag-
nold’s scaling has been directly observed by measuring shear
stress and strain rate profiles in numerical simulations of
granular flows down inclines �38,39� and is found to be con-
sistent with experimental observations of the average flow
rate in the same geometry �84�. The idea that dimensional
invariance would hold for dense flows and enforce Bagnold’s
scaling has recently emerged �45,69�.

We wish to highlight the fact that, far from being reserved
to “rapid” flows where kinetic theory applies, this dimen-
sional invariance is a profound property of Newton’s equa-
tions for hard-sphere systems. It holds in both the dense and
“rapid” flow regimes and does not require any of the as-
sumptions of kinetic theory to hold. To clarify this issue, we
find it useful to characterize the invariance in terms of phase-
space trajectories: this picture is well adapted to the case of
dense flows where grains undergo multibody interactions.

Namely, for a granular material free from external forces
with a constant shear rate, the time evolution will obey Eqs.

�1� and �2� with Fext=0. If we now rescale the contact forces
by a scalar value Fij→Fij /A and simultaneously rescale the
time t→ t�A, then Newton’s equations are transformed to
read

dqi

dt
=

pi
new

mi
,

dpi
new

dt
= �

j

Fij , �3�

d�i

dt
= �i

new,
d�i

new

dt
=

1

Ii
�

j

Rin̂ij � Fij , �4�

where pi
new= pi /�A and �i

new=�i /�A. This form for Newton’s
equations is identical to Eqs. �1� and �2� with new values for
the momenta and angular velocities.

Under the rescaling of contact forces and time, the posi-
tions and angular orientations remain unchanged, while the
velocities are changed in accordance with the time rescaling.
If we were to watch a movie of one granular flow where the
grains have initial velocities pi and �i and watch another
movie at half the speed where the initial velocities are
doubled, pi→2pi and �i→2�i, the two movies would look
exactly the same in the hard-sphere limit. The difference in
the dynamics is that the contact forces measured in the sec-
ond movie would be 4 times larger than those in the first.

This invariance is a property of perfectly hard grains
which must hold in the inertial regime. This includes the
regime infinitely close to jamming, where multibody interac-
tions dominate collisional terms and the basic assumptions of
kinetic theory fail. This invariance holds for any value of the
restitution and friction coefficients. In an experiment, this
scaling breaks down only when it is no longer appropriate to
model the experimental system by perfectly hard grains. Re-
lying on the arguments of Campbell introduced earlier �72�,
we can conclude that many experimental granular flows are
in the regime where it is appropriate to model the system by
hard grains.

Let us note that this invariance is not limited to transla-
tionally invariant situations, like in the bulk of a granular
flow or a biperiodic simulation cell. Indeed, suppose that we
study the motion of perfectly hard grains sheared between
two confining walls taken themselves to be perfectly hard.
Then, again, a rescaling of force and time scales leave the
phase-space trajectories invariant. In other words, changing
the shear rate imposed via the walls leaves the velocity pro-
file of the confined granular medium—including possible
boundary layers—invariant after the appropriate rescaling.
The forces in the whole system are rescaled accordingly.

C. What quasistatic limit?

In amorphous systems such as low-temperature molecular
glasses, dense suspensions, and foams, energy dissipation
has a characteristic time scale. In these systems, as the strain
rate is lowered at constant density, the strain rate may even-
tually become low compared to the dissipation rate. Then,
the flow reaches a state where kinetic energy becomes neg-
ligible compared to other forms of energy and the material
flow properties become independent of strain rate: this is the
quasistatic regime. The situation is quite different for granu-
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lar materials, as long as they can be modeled as perfectly
hard grains, because the rate of energy dissipation scales
with the strain rate. The terms entering Newton’s equations
always remain in the same ratio, which is a function of den-
sity only.

The quasistatic limit is thus pathological for perfectly
hard grains: when the strain rate is scaled down, the system
is always exploring the same trajectories in phase space, but
at a slower speed.1 In other words, the material cannot jam
by lowering the strain rate; jamming is reached only by in-
creasing the density �86�.

This property suggests that it is essential to correctly ac-
count for the rate of elementary events which governs the
microscopic dynamics—e.g., dissipation—in a dense granu-
lar flow. In dilute flows, the rate of elementary events is the
rate of binary collisions. In dense flows, this notion should
thus be generalized in terms of a “rate of elementary events.”

D. Granular temperature

The above-mentioned invariance may help us form a pic-
ture for the physical interpretation of elementary events in
dense flows. Under a simultaneous change in time and force
scales, the positions and angular orientations of grains are
invariant: the path that a granular material takes in configu-
ration space is also invariant, and only the speed along this
path is altered. Therefore, the path that a granular material
takes in configuration space can be separated from the rate at
which events occur along that path.

From a more physical standpoint, a dense granular flow of
perfectly hard grains is animated with intense rattling and
changes of the contact network orientation. The dynamics of
the system involves many minute events which generalize
binary collisions: these are, creation and opening of contacts,
rearrangements of the existing force network, and sudden
changes in the nature of a frictional contact �sliding or not�.
In our simulations, these events occur at a high frequency
compared to the evolution of mean-field quantities. Hence
we will assume that the frequency of microscopic events is a
self-averaging quantity which can be given a mean-field
value at the slow scale of the evolution of mean-field quan-
tities in a dense system. We will define granular temperature
T by denoting the frequency of microscopic events as �T / 	R

�the average grain size 	R
 is inserted so that T has units of
velocity squared�.

This definition of “granular temperature” being given, we
then notice that the kinetic energy should be proportional to
T up to a density-dependent factor. The kinetic energy of a
dense flow can be written as

Tk =
m

2
�	v2
 − 	v
2� +

	I

2

�	�2
 − 	�
2� , �5�

where m is the average mass, v the velocity, I the moment of
inertia, � the angular velocity, and brackets denote an aver-

age over grains. As we will focus on scalings which arise at
constant density, we will neglect all density-dependent fac-
tors in the following constitutive equations and assume T is
proportional to Tk in the present work. This means that at any
time, the kinetic energy provides an estimate of the fre-
quency of elementary events in a multicontact system.

Denote p as the pressure, � the shear stress, �̇ the strain
rate, � the mass density, and D the average diameter of
grains. Some important invariant �and dimensionless� quan-
tities are p /�D2�̇2, � /�D2�̇2, pDd /Tk, �Dd /Tk, Tk /�Dd+2�̇2,
and � / p. These must be single-valued functions of density
only �independent of the strain rate�. This observation, estab-
lished by the invariance in Newton’s equations which holds
for granular flows in the dense and collisional regimes, au-
tomatically predicts Bagnold’s scaling: since � /�D2�̇2 is a
function of density only, it follows that �	�̇2.

III. CONSTRUCTION OF A NUMERICAL TEST

In constructing a numerical test our goals are to measure
stress-strain relations when granular temperature and stresses
are appropriately scaled, show that they compare well with
the standard response of yield stress liquids, and show that
the rheology measured in simple shear flow matches the bulk
rheology of a granular flow down an incline.

In order to address these issues, we implement numerical
simulations of granular materials in two different geometries.

�i� We implement simple shear flow in a cell with Lees-
Edwards �LE� boundary conditions. In this configuration, the
density and shear rate is prescribed and the simulation cell is,
by construction, translationally invariant. This grants direct
access to averaged quantities of the granular temperature and
stress tensor. Using this configuration we can characterize
the steady-state relation between stresses, granular tempera-
ture, and strain rate and extract numerically the parameters of
a constitutive law for granular materials. A screenshot of this
shearing geometry is shown in Fig. 1.

1This scaling property is directly related to the observation by
Campbell that “there is no path between inertial �rapid� flow and
quasistatic flow by varying the shear rate at fixed concentration”
�72�.

FIG. 1. Snapshot of a granular material simulation in the simple
shear configuration. Each grain has an average velocity in the x
direction given by �̇y, where �̇ is the strain rate. The center of the
cell is defined as x=y=0.
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�ii� We implement granular flow down an inclined plane
made of stationary grains. The simulation cell is periodic in
the direction �x� parallel to the plane and the flow is inho-
mogeneous in the perpendicular �y� direction. In this con-
figuration, the stresses are prescribed by the angle of the
incline. We perform x-averaged, y-dependent measurements
of granular temperature, velocity profiles, and strain rate.
Large heights of the granular layer grant access to the bulk
rheology of the flow. This permits us to check the existence
of a well-defined bulk rheology in the large-height limit and
to compare it with the measurements in simple shear. A pic-
ture of this shearing geometry is shown in Fig. 2.

In order to make a quantitative comparison of the two
simulations, we use the same material: a two-dimensional
polydisperse mixture of constant-density grains with the radii
drawn from a flat distribution with average radius 	R
 and
width 
R. For all of the simulations in this paper we set

R / 	R
=0.5, using 	R
=0.7. This distribution prevents crys-
tallization and produces an amorphous granular material, as
can be seen from measurement of the pair correlation func-
tion in Fig. 3. The horizontal axis �d� in this figure corre-
sponds to the distance between a pair of grains, divided by
the sum of their radii. This normalizes the figure so that
d=1 corresponds to contacting grains. Other than this peak,
the function has some small variation �which implies a cor-
relation� between d=1 and d=3. However, there is no corre-
lation beyond d=3. Because there is no large-scale correla-
tion, this implies that the granular material is amorphous.

In this paper we present data for normal and tangential
coefficients of restitution given by en=et=0 �see Eq. �6� for a
precise definition of these coefficients�. It was shown by
Chevoir et al. �87� that the regimes reached by granular ma-
terials are almost independent of the restitution coefficients
below some threshold around en=0.7. Different friction co-
efficient have been used: frictionless grains and �=0.4.

Our simulations of granular materials rely on the contact
dynamics algorithm �88–92�. In our case, where we are in-

terested in the properties of perfectly rigid grains, the contact
dynamics algorithm offers considerable advantage over a
soft-sphere simulation �46�. By using the contact dynamics
algorithm we will never be in a state where the deformation
of grains determines the properties of the macroscopic
flow. In particular this will allow us to demonstrate that the
bulk properties of incline flow, which our study finds to be
identical to those from previous studies �38,39�, can be
determined simply by considering properties of perfectly
hard grains. Additionally, in the limit of high inelasticity and
hard spheres, the contact dynamics algorithm is computa-
tionally faster than soft-sphere simulations, where the simu-
lation time step scales inversely with both the particle stiff-
ness and normal coefficient of restitution �93�. We refer to
the literature for technical details of the contact dynamics
algorithm and present below a brief overview of the method,
supplemented by a single addition we made in order to con-
struct a Lees-Edwards simulation cell for frictional granular
materials.

A. Contact dynamics

A contact dynamics algorithm was constructed to carry
out numerical simulation of spheres interacting through the
enforcement of hard-sphere conditions �88�.

When a contact occurs there is an noncontinuous force
created that prevents the contacting grains from penetrating.
The magnitude of this force is chosen to ensure that the final
relative velocity u of the grains is related to the initial rela-
tive velocity u0 via the equations

un = − enun
0, ut = etut

0, �6�

where en and et are constant restitution coefficients that will
depend on the shape and consistency of the grains, and the n

FIG. 2. Snapshot of a granular material simulation in the incline
flow configuration. Fixed grains �indicated by solid circles� create a
stationary incline at angle � on which the flowing grains are accu-
mulated and allowed to flow. Gravity drives the motion and is di-
rected vertically downward.

FIG. 3. The pair correlation function for a frictionless granular
material at high density in linear �top� and logarithmic �bottom�
scales, as a function of grain diameters d. This function is represen-
tative of the pair correlation functions for other densities and for
granular materials with friction between grains. There is a large
peak corresponding to contacting grains �d=1� and some variation
between d=1 and d=3. For d�3 there is no correlation between
grains. This implies that the material is amorphous.
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and t subscripts represent the normal and tangential parts of
the relative velocity with respect to the contact. At each time
step, the algorithm computes the contact forces by first en-
suring that these relations hold at each contact.

To include friction, the contact dynamics algorithm en-
sures that the resulting tangential force Ft is less than or
equal to �Fn where � is the friction coefficient between
grains and Fn is the normal force. If this constraint does not
hold, then the algorithm sets Ft=�Fn in order to comply with
Coulomb friction.

In this way the contact dynamics algorithm calculates, at
each time step, contact forces that are consistent with New-
ton’s equations and the hard-sphere contact law.

B. Sllod equations for simple shear flow

Lees-Edwards boundary conditions permit us to prescribe
the deformation of a material by controlling the positions of
the image cells �94�. In all of the simulations presented here,
we impose a constant strain rate �̇ so that a grain at position
y has an average velocity of �̇y in the x direction �see Fig. 1�.

It was recognized in early implementations of LE bound-
ary conditions that when deformation is applied through the
image cells, the information needs time to propagate from
the cell boundaries to its center. In order to ensure rapid
propagation of this information and prevent the boundaries
between cells from making unphysical contributions to the
motion, it is necessary to modify Newton’s equations by in-
troducing so-called Sllod terms. These terms can be under-
stood as a sort of “shear bath,” with all particles in the cell
being directly coupled to the overall deformation �95�. In
practice, the Sllod terms introduce a mechanical perturbation
to the equations of motion that gives each grain an average
velocity consistent with simple shear flow. If we separate the
momentum pi of each grain i into the average part mi�̇yi and
fluctuating part p̃i, so that pi=m�̇yi+ p̃i, then the Sllod equa-
tions read

dqi

dt
=

p̃i

mi
+ x̂�̇�qi · ŷ�,

dp̃i

dt
= �

j

Fij − x̂�̇�p̃i · ŷ� . �7�

The equation for the position qi is simply the result of writ-
ing the momentum in terms of an average and fluctuating
part. The equation for p̃i contains a new term x̂�̇�p̃i · ŷ� which
forces the shear flow. Since every grain in the primitive cell
is acted upon by this mechanical force, the constant strain
rate is imposed on all of the grains simultaneously at the
beginning of the simulation. This can be easily appreciated
by writing the equations of motion �7� in terms of just the
position. This yields

d2qi

dt2 =
1

mi
�

j

Fij + x̂
d�̇

dt
�qi · ŷ� , �8�

where the equation of motion is only altered by including a
term with the time derivative of the shear rate. In this paper,
where we only consider simple shear flow simulations with a
constant shear rate, the new term will be nonzero just at the
beginning of the simulation. At this time it will serve to set
the initial velocities of the grains such that pi=m�̇yi. After

this initial intrusion, the new term will always be zero and
the shear flow will be upheld by the LE boundary conditions.
Furthermore, it can be proven that, in the LE geometry, the
Sllod equations give an exact representation of simple shear
flow arbitrarily far from equilibrium �95,96�.

For a granular material with nonzero friction coefficient
�, the equations of motions should incorporate rotations of
the grains �for �=0 the tangential contact force is always
zero and there is no rotation�. It is expected that a Sllod term
should arise in the equations of motion for the angular ve-
locity since, in the linear velocity profile indicative of simple
shear flow, the top and bottom of every grain should be mov-
ing with slightly different velocities. This will give each
grain an average rotation of �̇ /2 which must be incorporated
in Eq. �2� just as the average velocity x̂�̇�qi · ŷ� was incorpo-
rated in Eq. �7�. This leads to the following equations:

d�i

dt
= �̃i +

�̇

2
,

d�̃i

dt
=

2

miri
2�

j

Rin̂ij � Fij , �9�

where �̃i denotes the fluctuating part of the angular velocity
and we have inserted the moment of inertia of constant den-
sity disks in two dimensions.

Equations �7� and �9� now give an exact representation of
simple shear flow for a frictional granular material arbitrarily
far from equilibrium.

The primary interest of this procedure is that it permits us
to simulate a sheared granular material with a homogeneous
shear rate. Experimental procedures—e.g., in a Couette
cell—do not guarantee that the strain rate is homogeneous:
the existence of walls induces a nonuniformity of the flow
and possibly localization of the deformation. Our protocol
grants direct access to the rheology of the granular material
in a self-averaging situation.

C. Macroscopic quantities

We define the stress tensor �� via Cauchy’s equation

�
d

dt
	v�
 + �	v�
��	v�
 = − ���� + fext

� , �10�

where 	v�
 is the average velocity in the � direction �aver-
aged over all grains�, � is the mass density, and fext is the
external force per volume. This equation simply states that
the total time derivative of the average velocity �left-hand
side� is proportional to the divergence of the stress tensor,
plus any external forces. Cauchy’s equation gives a definition
of the stress tensor from which there exists a procedure to
derive the functional form of the stress tensor. This is called
the Irving-Kirkwood derivation �96�, and it yields

��V = �
i

miṽi
�ṽi

� + �
i�j

�Ri + Rj�n̂ij
�Fij

� , �11�

where ṽi is the fluctuating velocity of grain i determined by
ṽi

�=vi
�− 	vi

�
, and V is the volume of the granular material
�or area in two dimensions�. In this paper we will focus on
time- and space-averaged measurements of the stress tensor
so that the Irving-Kirkwood formula is applicable. Other for-
mulas must be applied when less-coarse-grained measure-
ments are required �97,98�.
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The symmetric stress tensor can be written in terms of
three variables: the pressure p, shear stress �, and first nor-
mal stress difference N1 defined as

�� = �p�1 + N1� − �

− � p�1 − N1�
� , �12�

where the signs are chosen so that shear stress and pressure
are positive in our conventions. Although recent work has
suggested that the stress tensor may be nonsymmetric in
granular materials �52,99�, we have observed that the stress
tensor is symmetric for all of the flows we investigate here.

The granular temperature T is measured as

T = �
i

vi
2 − ��

i
vi�2

+
1

2�
i

Ri
2�i

2 −
1

2��i

Ri�i�2
, �13�

which is proportional to the kinetic temperature from
Eq. �5�, with the factor of 1 /2 coming from the moment of
inertia calculated for constant-density disks. The granular
temperature is also proportional to the total energy in the
system since there is no elastic energy in our hard-sphere
simulations.

Last, for all of the numerical data that will be presented,
we quantify the density of the system by its packing fraction
�. The packing fraction is defined as the area occupied by
grains divided by the total area of the system. In our simu-
lations, the packing fraction is proportional to both the mass
density ����=4�� and the number density n�n�	R2
=��.

IV. TEST OF LOCAL RHEOLOGY

We first study the average relation between pressure p,
shear stress �, shear rate �̇, and granular temperature T in
simple shear, using the periodic and translationally invariant
LE cell. Next we compare these results with data obtained
for the granular flow down an inclined plane.

A. Simple shear

1. Preliminary test

In all of the simple shear simulations presented here we
have simulated 2500 grains in a square primitive cell, al-
though we have conducted a limited number of simulations
with up to 10 000 grains to ensure the accuracy of our ob-
servations. Because the contact dynamics algorithm induces
some amount of numerical noise, the motion of a collection
of grains driven at different shear rates is not expected to
reproduce exactly the same phase-space trajectory. In Fig. 4
we show raw data of the normalized pressure p�̇−2 as func-
tion of shear strain �strain rate multiplied by time�, at a pack-
ing fraction of 0.8 with no friction and at two different values
of the shear rate.

According to the invariance in Newton’s equations p�̇−2

should be independent of �̇, and this behavior is confirmed
by the measurements in Fig. 4. Although the shear rates in
the two plots differ by a factor of 104, the normalized pres-
sure is virtually identical for both systems. Interestingly, not
only do the steady-state values show no shear rate depen-
dence, but the initial transient is virtually identical for both

values of �̇. The invariance in Newton’s equations also pre-
dicts that ��̇−2 and T�̇−2 are independent of �̇. For all of the
simulations we have carried out these predictions from the
invariance are upheld—although numerical noise often dis-
rupts the perfect invariance for large values of shear strain,
we see no change in the steady-state values of normalized
pressure, shear stress, or granular temperature as the shear
rate is varied at constant density. These results are not
surprising—the contact dynamics algorithm is a method to
simulate perfectly hard grains and the invariance in New-
ton’s equations only holds for perfectly hard grains—but
they offer assurance that the simulations are accurate.

The data in Fig. 4 also ensure us that the time step we use
is small enough. From an algorithmic standpoint, scaling the
strain rate amounts to a change in the time step. The good
scaling of this data ensures that our algorithm solves the
equations of hard spheres in a limit where the time step be-
comes irrelevant. It indicates that the number of contacts per
grain in our simulation is not simply an artifact of the finite
resolution of the contact dynamics methods.

For a granular material characterized by its pressure p,
shear stress �, temperature T, and strain rate �̇, we can con-
struct three independent invariant and unitless quantities:
� / p, �̇	R
 /�T, and mT / p	R
2, where 	R
 and m are the av-
erage grain radius and mass. In Fig. 5 we show values of
these three independent invariant quantities as a function of
shear strain for a frictionless granular material at packing
fraction of 0.8. For all quantities, steady flow is reached by a
shear of approximately 0.5, and we will subsequently pro-
vide stationary data by time-averaging our measurements be-
tween strains of 2 and 10. The values of � / p and mT / p	R
2

fluctuate much more than �̇	R
 /�T. This is due to the fact
that � and p depend on the forces between grains, which are
highly fluctuating in the hard-sphere limit. In our simulations

FIG. 4. Raw data of the pressure p �in arbitrary units� as a
function of total shear for two frictionless granular materials with
packing fraction 0.8. Data from simulations with different shear
rates �̇ are shown. The top plot corresponds to �̇=10−2 and the
bottom to �̇=102. The pressure is normalized by �̇2 which collapses
the two data sets onto one master curve �i.e., with this rescaling the
top and bottom traces appear essentially identical, up to numerical
noise�, as predicted by the invariance for hard-sphere systems.
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with 10 000 grains we observe that the fluctuations decrease
while the average value remains constant. This suggests
that in the limit of large system size, the fluctuations would
disappear.

2. Liquid-solid transition

In Fig. 6 we present the steady-state values of p�̇−2 /m,
��̇−2 /m, T�̇−2 / 	R
2, and � / p in simple shear for a range of
high-packing-fraction systems that we have studied, at zero
friction. Although there is relatively little change in these
quantities for small packing fraction, for packing fractions
larger that 0.75 there is a large increase in the values of the
stresses and granular temperature. Additionally, the func-
tional form of the stresses and granular temperature changes
from approximately exponential to a function that grows
faster than an exponential at �0.75.

Alam and Luding �100� have measured the steady-state
values of the first normal stress difference N1, defined via Eq.
�12�, in simple shear flow using a monodisperse collection of
grains. In dilute flows, a nonvanishing value for N1 results
from collisional terms and the anisotropy in the distribution
of velocities at Burnett order �101�. Alam and Luding re-
ported that N1 becomes negative at the onset of crystalliza-
tion. We have thus measured the first normal stress difference
in our system in order to ensure the absence of crystallization
and as a signature of the breakdown of kinetic effects. The
observation in Fig. 7 that N1�0 for all packing fractions in
our system is consistent with the observation that our system
remains amorphous. The decay of N1 over all packing frac-
tions is consistent with the idea that kinetic effects become
less important as the packing fraction increases, especially
after �0.75 when N1 begins to quickly decay.

In our numerical simulations, we expect the collisional
contributions to the stress tensor to be negligible. A detailed
study of the crossover between collisional and noncollisional
regimes will be the topic of a future work �79�. For now we
rely on the observation that the kinetic effects, as probed by
the first normal stress difference, decay close to jamming.
We also refer to prior works which support the same conclu-
sion �76,77�.

B. Flow down an inclined plane

In the simple shear cell the density and strain rate were
specified, while stresses and granular temperature were mea-
sured. We now focus on flow down an inclined plane which
provides a complementary situation. For incline flow,
stresses are specified by the choice of an angle of inclination
and by the gravitational field. Then the profiles of velocity
and velocity fluctuations are measured and grant access to
profiles of strain rate and granular temperature.

We report in Fig. 8 the packing fraction, average flow
velocity, granular temperature, and �̇	R
 /�T as a function of

FIG. 5. Invariant and dimensionless quantities � / p �top�,
�̇	R
 /�T �middle�, and mT / p	R
2 �bottom�, where 	R
 is the aver-
age grain radius and m the average grain mass, as a function of
shear strain for a frictionless granular material at packing fraction
0.8.

FIG. 6. Steady-state values of p�̇−2 /m �squares�, ��̇−2 /m �dia-
monds�, T�̇−2 / 	R
2 �circles�, and � / p �stars�, where 	R
 is the av-
erage grain radius and m the average grain mass, as a function of
packing fraction for a frictionless granular material.

FIG. 7. First normal stress difference N1 as a function of pack-
ing fraction for a frictionless granular material. N1�0 for all pack-
ing fractions suggests that the granular materials are amorphous,
and the decay of N1 as a function of packing fraction suggests that
nonkinetic effects dominate at high packing fraction.
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height for the steady flow of a nonfrictional granular material
at an angle of 12°, with a total height of approximately 50
grains and a total of 2500 grains. Each point is determined
by time-averaging the observable, in steady state, over an
averaging height of about 3 grains. We have conducted simu-
lations with heights and widths ranging between 25 and 100
grain diameters and have used different averaging techniques
to ensure that our results do not depend on the size of the
system or the averaging height.

We observe that, in the bulk central region of the flow, the
packing fraction profile is uniform, the granular temperature
is linear, and �̇	R
 /�T is constant. The packing fraction de-
creases near y=0 because we have not included the station-
ary grains that make up the incline in this measure of pack-
ing fraction. When we include them, we see a slight increase
in packing fraction near y=0. These observations hold in our
simulations for all angles where the granular flow reaches a
steady-state. We only use data from these steady-state flows
in this paper. These observations are consistent with previous
results by Silbert et al. �38,39�.

There are four quantities of interest for incline flows—p,
�, �̇, and T—and these lead to three independent invariant
quantities �̇	R
 /�T, � / p, and mT / p	R
2. We observe in our
simulations that all of these invariants are constant in the
bulk of the incline flow. Therefore it is legitimate to compare
these constant values with the constant values obtained from
simple shear simulations. In Fig. 9 we present how the con-
stant values of � / p, �̇	R
 /�T, and mT / p	R
2 in the bulk of
the flow depend on packing fraction and compare with our
results from the simple shear cell. The fact that data from
different shear flows fall on the same curves is remarkable
and suggests that one theory should be able to describe
simple shear and bulk incline granular flow.

Interestingly, the data from different flows do not overlap
over a large interval of packing fraction: the flow down an

inclined plane provides values at higher values of packing
fraction than the simple shear cell. This is due to the fact that
�i� steady flows down an incline plane are more easily
reached for lower inclinations, hence higher densities, and
�ii� the simple shear deformation is more difficult to integrate
numerically at higher densities, because the periodic cell in-
duces additional constraints that the contact dynamics algo-
rithm manages with difficulty. Nevertheless, our use of two
different configurations grants access to a broad range of
�̇	R
 /�T, � / p, and mT / p	R
2, and the sets of data are con-
sistent with the existence of a unique, local relation between
them as apparent in Fig. 9.

C. Origin of a local rheology

The excellent agreement between the two sets of data
challenges the belief that nonlocal effects arise in dense
granular flow. The data in Fig. 9 support a very conservative
opinion: the motion of the grains decorrelates beyond some
finite-length scale, in accordance with the fast decay of the
pair correlation function �see Fig. 3�.

In the bulk of the flow down an incline, it is possible to
view layers of granular materials as effective simple shear
cells. Such a layer of granular material at height y responds
essentially as if it was confined in a simple shear cell, in the
absence of body forces, with sustained external stresses ��y�
and p�y�. Of course the invariance in Newton’s equations,
which holds exactly for the simple shear cell, is slightly bro-
ken by the gravitational force field. However, deep in the
bulk of the flow, large confining stresses eventually dominate
over the gravitational field. This approximate invariance suf-
fices to predict that Bagnold’s scaling must hold for the bulk
regions of incline flows and explains the numerical data of
Silbert and co-workers �38,39�.

What is surprising is that the separation of microscopic
and macroscopic scales is observable for the moderate

FIG. 8. Profiles of packing fraction, average velocity, granular
temperature, and �̇	R
 /�T as a function of the height �y� in the pile,
measured in grain diameters, for a nonfrictional granular material at
a 12° incline. The acceleration from gravity is denoted g, and the
average grain radius is 	R
.

FIG. 9. The values of � / p �top�, �̇	R
 /�T �middle�, and
mT / p	R
2 �bottom�, where 	R
 is the average grain radius and m is
the average grain mass, plotted as a function of packing fraction.
Data from simple shear flow �circles� and flow down an incline
�squares� match on the same curves. This suggests that there is a
local rheology that is independent of the particular shearing
geometry.
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heights that we can access in our numerical simulations. This
suggests that the length scale � over which the motion of
grains averages is smaller than the size of the grains them-
selves. This is consistent with the fact that, in a dense sys-
tem, the region sampled by a given grain per strain unit is
typically smaller than its size.

As we will see, our theory provides constitutive equations
which relate the friction coefficient � / p to the ratio �̇	R
 /�T.
Anticipating the following sections, we present in Fig. 10 a
plot of � / p versus �̇	R
 /�T, with data from both the simple
shear and incline flow geometries. As we will argue, such a
plot is expected to be the granular counterpart of a stress
versus strain rate plot for a glassy material �69�, with the
shear stress normalized by the pressure and the strain rate
normalized by the granular temperature. We see here that the
analogy is striking: when rescaled properly the granular ma-
terial presents typical features of normal yield stress fluids
�102�. For large values of normalized strain rate, the normal-
ized stress is proportional to the normalized strain rate. For
small values of the normalized strain rate, the linear relation-
ship no longer holds and there is a yield �normalized� stress
at zero �normalized� strain rate.

V. CONSTITUTIVE EQUATIONS

Several interesting results stem from the preceding obser-
vations: �i� for a given density, only invariant quantities are
relevant to describe the state of a granular flow; �ii� when
invariant quantities are considered, the granular material dis-
plays a “normal” rheology of a yield stress liquid; and �iii�
the rheology measured in the Lees-Edward cell extrapolates
to the rheology measured from bulk data of incline flow.

These observations foster our hope to construct local con-
stitutive equations for dense granular materials. For sure, we
will not attempt here to produce “local” constitutive equa-
tions in the sense used in kinetic theory studies of dilute
granular flows �85�. Instead, we wish to present an elemen-

tary model of granular flow in the spirit of thermodynamic
models of material deformation in amorphous solids. Recent
advances have been made in this field, with the introduction
by Falk and Langer of STZ theory �70,71�. This theory con-
structs a “hydrodynamic” description of material deforma-
tion through the introduction of a small number of state vari-
ables and the prescription for their evolution in time.
Although these “rate-and-state” models are clearly limited by
their typically phenomenological constructions, they are mo-
tivated by plausible microscopic mechanisms and explore the
corresponding consequences through comparisons with ex-
perimental data �103�. Before addressing the specificities of
the STZ formulation of constitutive equations, we wish to
argue that the scaling invariance of Newton’s equations calls
for a parallel scaling form of the constitutive equations.

A. Scaling form for constitutive equations

In general, constitutive equations should provide a rela-
tion between the stresses and strain rate and a set of state
variables ��i� which characterize the internal structure of the
granular material. For granular materials the granular tem-
perature T plays a quite specific role as a state variable.
Other state variables are expected to account only for geo-
metric properties of the granular packing.

1. Conservation of energy

Ogawa �104� was the first to recognize that in granular
materials the temperature cannot be prescribed by a thermal
bath, but is set by energy balance. Kinetic theory provides
estimates for the energy dissipation rate in dilute systems,
hence providing approximations for the equation of motion
which governs granular temperature. As a result, the notion
of granular temperature has been tied to kinetic theory.

Granular temperature, however, is not reserved for the
description of dilute flows. It is relevant in all inertial flows
since, as discussed previously, there is no quasistatic limit for
hard spheres, even infinitely close to jamming. In particular
the dense flows of our simulations do not verify the assump-
tions of kinetic theory, yet in these inertial regimes kinetic
energy is a perfectly relevant physical observable and is set
by energy balance.

At any time, the variation of kinetic energy results from
the balance between external work done on the system and
dissipative mechanisms. Because the system explores phase-
space trajectories at a velocity proportional to �T, the rate of
energy dissipation should scale as �TT. The square root
gives the frequency of dissipative events, and each event
dissipates an energy proportional to T. Energy is introduced
to the system via the external forcing with a rate of ��̇.
Therefore, the energy balance equation should be of the form

�Ṫ = ��̇ − ���,��i���T
�T

	R

, �14�

where � represents the mass density. The factor � is a unit-
less geometric factor which depends on the relative positions
of grains, but should not incorporate any further dependence
on T or the stress tensor. In particular, it should depend on

FIG. 10. � / p plotted against �̇	R
 /�T in steady-state simple
shear flow �circles� and incline flow �squares�. Solid symbols cor-
respond to frictional granular materials with coefficient of friction
�=0.4, and open symbols correspond to nonfrictional granular ma-
terials with �=0.

LOIS, LEMAÎTRE, AND CARLSON PHYSICAL REVIEW E 72, 051303 �2005�

051303-10



the mass density � and possibly on other state variables ��i�
which characterize the geometrical structure of the granular
packing. By scaling invariance, the steady-state value of �
should depend of � only.

This equation has a similar form to the energy conserva-
tion equation derived in kinetic theory �105�. This is no sur-
prise since kinetic theory must uphold the invariance of
Newton’s equations. Kinetic theory provides an estimate for
����, and it is possible that even in dense flows this estimate
remains reasonable for nonfrictional grains. However, multi-
body collisions may induce departure of this relation from
the predictions of kinetic theory.

In Fig. 11 we present a plot of � as a function of shear
strain for a nonfrictional granular material in simple shear
flow, calculated via Eq. �14�. We observe a dynamic in � at
the start of the simulation which quickly disappears. The
dynamic is likely due to the effects of an unknown state
variable �i.

2. Constitutive relation

Since granular temperature is defined as the frequency of
elementary events along phase-space trajectories, the strain
rate should scale as

�̇	R

�T

= f��

p
,

mT

p	R
2 ,��i�� , �15�

where f denotes an unknown function and, once again, the
state variables ��i� are purely geometric.

If we combine Eq. �15� with Eq. �14� in steady state

where Ṫ=0, then we see that

� = ���	R
2F��

p
,�i�−3��̇2, �16�

where F is equal to the function f , with mT / p	R
2 evaluated
using Eq. �14�. This equation implies that if constitutive re-
lations are written in the form of Eqs. �14� and �15�, then
Bagnold’s scaling is upheld.

In the rest of this section we study the STZ formulation
of constitutive equations and apply it to dense granular ma-
terials. We will see that the STZ theory, when applied to
granular materials, makes a prediction for the function f in
Eq. �15�.

B. STZ theory

1. Basics

The shear transformation zone theory of amorphous solids
was proposed in �70,71,103,106–108� as a mean-field model
to account for the behavior of dense amorphous materials at
low temperature. The theory is motivated by observations
from simulations �109–113� and experiments �114� which
suggest that plastic deformation in amorphous materials re-
sults from nonaffine rearrangements of small clusters of par-
ticles �115�. Additionally, Falk and Langer were able to show
that there exist different types of zones which present a pref-
erential response to different orientations of shear forces.
They introduced the densities of these zones as state vari-
ables to characterize the internal structure of the molecular
packing.

Central to the theory is the assumption that once an STZ
undergoes an elementary rearrangement in a given direction
it is unlikely that it can shear again in the same direction,
although it can easily shear in the reverse direction. Thus
zones appear as two-state systems, the states corresponding
to the zone orientation being aligned �denoted “�”� or anti-
aligned �denoted “�”� with the shear stress. A rearrangement
corresponds to a transition of a zone from a � state into a �
state and vice versa. The plastic shear rate is given by the
rate at which STZ’s respond to external stresses:

�̇ 	 R+n+ − R−n−, �17�

where R± are the stress-dependent probabilities that zones of
� types are transformed into one another.

This constitutive relation must be complemented with an
equation of motion for the densities n±, which is postulated
to be of the form

ṅ± = R�n� − R±n± + w�� − �n±� . �18�

The first two terms correspond to the transformation of
STZ’s into their two possible states. The last term accounts
for the fact that STZ’s are renewed by the overall macro-
scopic deformation: it contains a creation and destruction
rate, both proportional to the plastic work w of external
forces per time unit.

2. Observation of directional response

Before applying STZ theory to granular materials, we
check that the same qualitative observations as in �70� can be
performed in these systems—namely, that nonaffine motion
occurs in localized regions and that the positions of the lo-
calized regions depend sensitively on the orientation of the
shear. The first observation motivates the choice of density of
STZ’s as a state variable, and the second observation shows
that each STZ has an orientation and therefore only responds
to a certain orientation of shear stress.

FIG. 11. � from Eq. �14� as a function of shear strain for a
simple shear flow of a nonfrictional granular material at packing
fraction 0.8. For small values of shear � varies slightly, but quickly
becomes constant at a shear strain of approximately 0.04.
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These observations are based on a measure of the non-
affinity of the deformation of a cluster of a few molecules or
grains. Following �70�, the grains undergoing a nonaffine
rearrangement can be determined by calculating, for each
grain, the local strain rate at time t−�t. Then, by measuring
the difference D between the actual position at a later time t
and the position predicted from the local strain rate at time
t−�t, we can determine which grains have moved non-
affinely in the time period �t. In practice, D is determined by
minimizing

D̃2�t,�t� = �
n

�
i
�rn

i �t� − r0
i �t� − �

j

�
ij + �̇ij�

��rn
j �t − �t� − r0

j �t − �t���2
, �19�

with respect to the shear rate �̇ij, where the indices i and j are
spatial coordinates and the index n runs over all grains
within two diameters of the reference grain, labeled by the

index n=0. The minimum value of D̃, denoted D, is an ap-
proximation of the local deviation from affine displacement
for the reference grain in the time interval �t−�t , t�. If there
is no nonaffine motion, then the motion of each individual
grain should be completely determined by a local shear rate
and D=0. If there is nonaffine motion, then D�0.

We have applied this test for nonaffine motion to granular
materials in simple shear to produce Fig. 12. This figure is
the counterpart of Fig. 3 in �106� and Fig. 7 in �70�, which
were created from simulations of an amorphous Lennard-
Jones solid. Each picture has been created by shearing an

identical initial arrangement of particles in a certain direc-
tion. D is the local measure of the nonaffinity obtained by
comparison between the initial and final states. If D is larger
than a reference value, the particle is said to have moved
nonaffinely and is colored black.

In Fig. 12�a� the system is sheared from strains of 0–0.05
and in Fig. 12�b� the system is sheared to from strains of
0.1–0.15. We notice that there is a tendency for the regions
of nonaffine displacement to form clusters, and the size of
the resulting nonaffine regions is about the same in both �a�
and �b�. In �c� the system is sheared from strains of 0–0.15
and now the size of the nonaffine regions increases, suggest-
ing many more fundamental rearrangements of STZ’s in the
larger time period. In �d� the system is sheared from strains
of from 0 to −0.05 �in the opposite direction�, starting from
the same initial configuration as in �a�. Once again we ob-
serve that the nonaffine regions tend to form clusters. How-
ever, in comparing �a� and �d�, we notice that the size of the
nonaffine regions is about the same in the two figures, but
the locations are different. If the regions undergoing non-
affine displacement did not have an orientation, we would
expect nonaffine motion to occur in the same location, re-
gardless of the orientation of the stress. However, this is not
the case and the data in Fig. 12 suggest that the regions that
move nonaffinely have an orientation. This is qualitative evi-
dence that the core assumptions of STZ theory are upheld in
granular materials.

3. STZ theory for granular materials

The STZ densities n± account for structural properties of a
molecular or granular packing. They are thus expected to
depend on the positions of grains, orientations and distribu-
tion of forces, and orientations of velocities, but not on the
overall amplitude of the forces or amplitude of velocities.
Following �69�, these functions are determined using the in-
variance in Newton’s equations. Since w is equal to the plas-
tic work done on the system per unit time, it should be pro-
portional to ��̇. In order to make w invariant, we normalize
by pressure so that w=��̇ / p. As for R±, because of the in-
variance in Newton’s equations, we can separate the rate at
which an STZ attempts to rearrange from the probability that
an attempt leads to a successful rearrangement. The attempt
rate must be proportional to �T which sets the microscopic
event rate, and the probability to rearrange is written as an
exponential activation factor of the invariant form e±��/p.
This yields R±	�Te±��/p.

Combining the expressions for R± and w with Eqs. �17�
and �18�, while making a change of variables from n± to
�	n−−n+ and �	n−+n+, yields the following STZ equa-
tions for granular materials:

�̇ 	 �T�� sinh���/p� − � cosh���/p�� ,

�̇ 	 �̇�1 − �
�

p
�� ,

FIG. 12. Screenshots of granular materials in steady-state simple
shear flow with grains undergoing nonaffine displacement, colored
black. In �a� the system is sheared from 0 to 0.05, in �b� the system
is sheared from 0.1 to 0.15, in �c� the system is sheared from 0 to
0.15, and in �d� the system is sheared in the opposite direction, from
0 to −0.05.
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�̇ 	 �̇
�

p
�1 − �� . �20�

� denotes the total density of zones, and � measures the
mismatch between zones, of different orientations and there-
fore is related to the anisotropy of the granular packing. �
and � are constants that do not depend on the macroscopic
variables �̇, T, �, or p. However, we would expect these
constants to depend on properties of the grains such as shape,
distributions of radii, restitution coefficients, friction coeffi-
cients, or other local static variables, including density.

These equations determine the shear rate of the flow
through the state variables � and �, which encode the mi-
croscopic structure of the material. Let us note that other
recent theories of dense granular flows introduce state vari-
ables of a rather different nature to account for jamming. For
example, Aranson and co-worker consider that relevant state
variables are associated with the numbers of solidlike con-
tacts between grains �64–66�. Bazant introduces a density of
“spots” of free volume, �67,68� which are closely related to
some of our works on free-volume dynamics in dense mate-
rials �116–119�. These models rely on state variables which
are intrinsically scalar. The specificity of the STZ equations
is that the quantity � is “homogeneous” to a tensor as it is
related to the anisotropy of the contact network.

4. Steady states

The STZ equations present two types of steady-state so-
lutions �69–71�. One branch of solutions represents a
jammed state �̇=0 and occurs when � /�=tanh��� / p�. The
other branch of solution represents the steady flow and oc-
curs when �=1 and �= p / ����.

An elementary analysis of the phase diagram of this dy-
namical system indicates that the jammed state is stable if
and only if

�
�

p
tanh��

�

p
� � 1 �21�

and the flowing state is stable otherwise. The limit of stabil-
ity occurs at a critical angle �*, which is the solution of

� tan �* tanh�� tan �*� = 1. �22�

�* is identified as the repose angle of our granular material.
In the steady flowing regime �̇�0 and STZ theory yields

the constitutive relation:

�̇	R

�T

	 �sinh���/p� −
p

��
cosh���/p�� , �23�

where we have inserted a factor of the average grain
radius 	R
 to match units. In particular, in the limit when the
ratio �̇	R
 /�T vanishes, � / p converges towards tan �*.
Therefore the STZ theory accommodates cases where there
is a residual pressure and shear stress at zero shear rate and
predicts that in this case the shear stress will be proportional
to the pressure.

C. Numerical tests

The constitutive equations for granular materials intro-
duced in this paper are entirely specified by Eqs. �14� and
�20�. We now compare the steady-state relations predicted by
these equations with our numerical data, which provides in-
dependent access to �, p, T, and �̇ in different shearing ge-
ometries.

We first test Eq. �14� in simple shear flow. We find that for
all densities investigated, much like Fig. 11, � is constant as
a function of shear strain. Additionally we find that the
steady-state value only depends on the density and friction
coefficient. We present the measured steady-state values of �
in Fig. 13 as a function of packing fraction, for frictionless
��=0� and frictional ��=0.4� granular materials. For fric-
tionless granular materials � appears to vary exponentially as
a function of packing fraction, whereas for frictional granular
materials � does not take on an obvious functional form.

Next, we test the steady-state STZ prediction from Eq.
�23�. In Fig. 14 we have plotted numerical data of � / p as a
function of �̇	R
 /�T for frictional and nonfrictional granular
materials in both simple shear flow and incline flow. The line
drawn through the data is a fit to Eq. �23�. The fit matches
the data from both flowing geometries very well.

To construct the fit, we have used the data from the simple
shear cell only. This fit permits us to extrapolate the rheol-
ogy for the flow down an incline plane, even at the approach
of the repose angle. This demonstrates that an accurate de-
termination of the coefficients from the STZ equation �23� in
one shearing geometry allows for a prediction in a different
shearing geometry.

VI. CONCLUSION

We have implemented numerical simulations of dense
granular flows in order to clarify the microscopic origin of
jamming and the specific assumptions needed to construct
the STZ formulation of constitutive equations for dense
granular flows.

FIG. 13. Density dependence of �, defined through Eq. �14�, for
frictional �solid symbols� and nonfrictional �open symbols� simple
shear flows.
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Our first goal was to obtain detailed information on dense
granular flows, in particular on the locality of the constitutive
relation. For this purpose we implemented two different
simulation configurations: a simple shear cell, with Lees-
Edwards periodic boundary conditions and Sllod equations
of motion, and the flow of a granular material down a rough
incline. In both configurations we measured the components
of the stress tensor, packing fraction, strain rate, and granular
temperature.

We have also observed the normal stress difference and
shown that it vanishes in dense flows so that, in this regime,
shear stress and pressure completely characterize the stress
tensor. In each configuration we studied, the rheology of
dense granular materials is entirely specified by five quanti-
ties: shear stress �, pressure p, packing fraction �, strain rate
�̇, and granular temperature T. In the shear cell � and �̇ are
prescribed, and in the flow down an incline � and p are
prescribed. The rheology of the granular material requires us
to specify three relations which determine the remaining un-
knowns. There are many equivalent ways these relations can
be formulated, but we wished to formulate them in a way
that emphasized the invariance of Newton’s equations and
the expected scaling form of constitutive equations.

We found, as anticipated in �69�, that the relation between
quantities �̇	R
 /�T and � / p is remarkably similar to the
stress-strain rate relation in a normal elastoplastic transition.
We were surprised to observe the quality of the fit to the data
of Fig. 14 with expression �23� without any density depen-
dence of the parameters of the theory. We would have ex-
pected that these parameters might involve a strong density
dependence. This observation strengthens the hypothesis that
the distinguishing feature of granular materials is the way
energy balance is prescribed and otherwise, once the vari-
ables are appropriately rescaled, they behave like “normal”
materials.

Another relation emerges naturally from the expectation
that energy balance in granular materials should take the
form as in Eq. �14�. The density-dependent parameter � ac-
counts for the rate of dissipation of energy, and we would
expect it to be reasonably captured by collisional integrals of
the type used in kinetic theory �at least for nonfrictional ma-
terials�. A proper derivation of energy dissipation in dense
flows now appears as an accessible yet challenging issue that
we wish to examine in future works.

Finally, a third relation remains to be specified. This rela-
tion can be, for example, a prescription for � / p or �̇	R
 /�T
as a function of packing fraction. We observed this relation
in Fig. 9, but did not attempt to model it. Other works of ours
�116–119�, as well as Bazant’s “spot” model �67,68�, attempt
to account for the role of free-volume fluctuations in the
rheology of dense materials. A related idea is the introduc-
tion by Aranson et al. �64–66� of a state variable associated
with the density of solidlike contacts. These approaches fo-
cus more directly on the density dependence of the response
of dense granular materials and may thus provide the missing
relation.

As we see, the STZ theory correctly predicts one among
three relations which are necessary for a complete descrip-
tion of dense granular flows. This relation, coupled to Bag-
nold’s scaling, suffices to account for the shape of the veloc-
ity profile down an incline. However, it does not account for
the overall amplitude of the velocity profile or the uniform
value of the density as a function of tan �.

Note that we have compared here data from a Lees-
Edward cell with the rheology of a flow down an inclined
plane in the limit where the height of the granular material is
large. The agreement between the two sets of data indicates
that there is no long-range structure which governs the flow.
This does not mean, however, that no gradient or diffusive
terms should ever appear in the final form of the rheology of
granular flows. In particular, we expect that a diffusive term
should arise in Eq. �14�, but in the large-height limit this
diffusive term does not appear in the bulk rheology.

This brings us to the observations by Pouliquen �84� of a
relation hstop��� which governs jamming. These observations
have led to the idea that nonlocal constitutive equations
might be required to capture the rheology of granular mate-
rials. However, we expect these observations to be “normal”
finite-size effects. For example, it was observed in �69� that
an exponentially decaying kernel in place of w in Eq. �18�
was sufficient to account for large values of hstop��� when
�→�*. The analytical form of the kernel used in this work
was consistent with an exponential decay of correlation in
the system, again consistent with the notion that short-range
correlations suffice to understand these effects. But other
theories also successfully introduce finite length scales to
account for macroscopic phenomena. In particular, the “spot”
model �67,68� relates such a length scale to the size of dif-
fusive regions of high free volume, which seems rather
complementary to our viewpoint. It seems that the existence
of a finite size for rearranging zones suffices to account for
the emergence of large length scales close to jamming.

Another puzzling observation by Pouliquen was that the

FIG. 14. � / p plotted against �̇	R
 /�T for frictional �solid sym-
bols� and nonfrictional �open symbols� granular materials. The
circles correspond to data from simple shear flow and the squares to
data from steady-state incline flow. The line is a best fit to the
steady-state STZ prediction from Eq. �23�, where only the data from
the simple shear flow geometry were used to construct the best fit.
This shows that STZ theory properly predicts the outcome of in-
cline flow experiments once the parameters �which depend only on
grain properties� are determined from simple shear experiments.
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amplitude of the velocity profile seemed to scale as
1/hstop���. As we saw previously, this amplitude is governed
by ���� and a missing relation between, e.g., � / p and �. We
thus cannot provide an interpretation for these observations.

Our observations on a model system strongly suggest that
the definition of a local rheology for granular materials is, in
principle, possible. Moreover, we see emerging from our
analysis some state variables and their equations of motion.
This now opens a very exciting route toward a set of local
hydrodynamic equations for dense granular materials: such
equations will offer a predictive tool to further address

fundamental and practical questions in numerous situations
where flow equations for granular materials are much
needed.
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